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The purpose of this paper is to investigate the physics underlying the controlled self-assembly of micropar-
ticles and nanoparticles at a two-fluid interface using an electric field. As shown in recent experiments, under
certain conditions an externally applied electric field can cause particles floating at a two-fluid interface to
assemble into a virtually defect free monolayer whose lattice spacing can be adjusted by varying the electric
field strength. In this work, we assume that both fluids and particles are perfect dielectrics and for this case
analyze the (capillary and electrical) forces acting on the particles, deduce an expression for the lattice spacing
under equilibrium condition, and study the dependence of the latter upon the various parameters of the system,
including the particles’ radius, the dielectric properties of the fluids and particles, the particles’ position within
the interface, the particles” buoyant weight, and the applied voltage. While for relatively large sized particles
whose buoyant weight is much larger than the vertical electrostatic force, the equilibrium distance increases
with increasing electric field, for submicron sized particles whose buoyant weight is negligible, it decreases
with increasing electric field. For intermediate sized particles, the distance first increases and then decreases

with increasing electric field strength.

DOI: 10.1103/PhysRevE.77.056302

I. INTRODUCTION

A technique in which an electric field is applied in the
direction normal to a two-fluid interface has been recently
developed to control the process of particles self-assembly at
the interface [1,2]. Particles floating at an interface, in gen-
eral, self-assemble or cluster because they deform the inter-
face, thus giving rise to lateral capillary forces which cause
the particles to cluster. For example, cereal flakes floating on
the surface of milk cluster by this mechanism. The attractive
lateral capillary forces arise due to the fact that for two float-
ing particles, the deformed interface is such that the interface
height between the particles is lowered due to the interfacial
tension [3]. Tt is easy to see that the lateral component of the
capillary force acting on the particles is attractive and causes
them to move toward each other.

This naturally occurring phenomenon, however, produces
monolayers that display many defects, lack order (both short
and long ranged) and whose distance between the particles
cannot be controlled, three drawbacks which seriously limit
the range of applications one can target using this technique.
In addition, such a phenomenon does not manifest itself on
particles smaller than ~10 wm. The technique developed in
Refs [1,2] overcomes all these shortcomings (see Fig. 1). The
clustering of particles at interfaces is important because it is
capable of modifying the interfacial properties of two-phase
systems and also because it is used for the self-assembly of
particles to form monolayers at two-liquid interfaces (see
Ref. [4], and references therein).

In equilibrium, the vertical position of a floating particle
within a two-fluid interface is such that the sum of the forces
acting on the particle in the direction normal to the interface
is zero. A particle denser than the liquid below can float on
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its surface because the vertical component of the capillary
force, which arises due to the deformation of the interface,
balances the particle’s buoyant weight (see Fig. 2). For a
small particle of radius a, the buoyant weight, which scales
as a°, becomes negligible, and therefore only a small inter-
facial deformation is needed in this case for the vertical cap-
illary force to balance the buoyant weight. Consequently, the
lateral capillary forces due to this small deformation of the
interface are too small to move micron and nanosized par-
ticles, and thus, small particles, in general, do not self-
assemble. It is known that for particles floating on the air-
water interface the attractive capillary forces are significant
only when the particle radius is larger than ~10 um [4].
This restriction, however, does not apply to particles trapped

FIG. 1. (Color online) Assembly of glass particles floating at an
air-oil interface. The average radius of the particles is 23.5 um. (a)
Particles self-assemble under the action of the lateral capillary
forces alone. The lattice is approximately triangular, but lacks long
range order and contains many defects. (b) When a voltage V
=5000 V is applied, particles move away from each other and form
a defect-free triangular lattice in which the distance between the
particles is approximately 2.7 times the particle radius. This order is
maintained as the electric field is either increased or decreased,
particularly as it is decreased to zero [1].
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FIG. 2. Schematic of a heavier than liquid hydrophilic (wetting)
sphere of radius a hanging on the contact line at .. The point of
extension of the flat meniscus on the sphere determines the angle 6,
and £, is defined as h,=a(cos §.—cos 6;). The angle « is fixed by
the Young-Dupré law and 6, by the force balance.

in thin films with a thickness smaller than the particle diam-
eter. In fact, particles ranging from protein macromolecules
to millimeter sized particles can self-assemble in such thin
films [5]. Moreover, small particles can self-assemble if they
are charged or if they have irregular contact lines [6].

Experiments described in Ref. [1] show that particles
floating at a two-fluid interface can be self-assembled to
form monolayers by applying an electric field normal to the
interface, and that the lattice spacing of the monolayers thus
formed can be adjusted by varying the electric field strength.
The technique also leads to the formation of virtually defect
free monolayers with long-range order and, in principle, can
be used for manipulating the assembly of submicron sized
particles in two-fluid interfaces. It thus overcomes all the
shortcomings of the usual capillarity induced clustering men-
tioned earlier.

We next discuss the dependence of the electrostatic force
acting on a particle upon the parameters of the system such
as the dielectric constants of the fluids and particles, the par-
ticles’ position within the interface, and the distance between
the particles. It is also shown that the component of the elec-
trostatic force normal to the interface alters the deformation
of the interface due to the particles, and thus the magnitude
of the lateral capillary forces. The lateral component of the
electrostatic force acting on the particles is repulsive, and its
balance with the attractive capillary force is used to deter-
mine the equilibrium distance between the particles. It is
assumed that both the particles and the fluids considered here
are perfect dielectrics.

II. ELECTROSTATIC FORCES, GOVERNING EQUATIONS,
AND DIMENSIONLESS PARAMETERS

As in the case of our experiments, it is assumed that the
electric field away from the interface is uniform and normal
to the undeformed interface (see Fig. 3). It is well known that
while an isolated uncharged dielectric particle placed in a
uniform electric field becomes polarized, it does not experi-
ence any electrostatic force. This, however, is not the case
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FIG. 3. Schematic of the experimental setup used in Ref. [1] to
assemble particles on the surface of corn oil. The distance between
neighboring particles is controlled by adjusting the magnitude of
the applied voltage. An ac electric field with frequency 100 Hz was
used to make the influence of conductivity negligible.

for a particle floating at a two-fluid interface because of the
mismatch between the dielectric constants of the two fluids
involved. Moreover, from symmetry it is clear that the elec-
trostatic force acting on an isolated spherical particle at an
interface can only be in the direction normal to the interface,
but depending on the parameter values it can be either up-
ward or downward. If the particle is charged, a Coulomb
force also acts on the particle. In addition, when there are
other particles present at the interface they interact with each
other via dipole-dipole interactions. We now proceed to com-
pute the electrostatic force acting on the particles at the in-
terface, first briefly describing the numerical method used.

A. Numerical method

Let us denote the domain containing the two fluids and
spherical particles (of identical radii and properties) by (),
the interior of the ith particle and its surface by P;(r) and
dP(t), respectively, and the domain boundary by I'. To cal-
culate the electric field E, we first solve the electric potential
problem for ¢ in (), namely, V-(eV ¢)=0 subjected to the
boundary conditions on the particle surfaces and the two-
fluid interface. On the particle surface dP;(z), the conditions
read ¢,=d,, €.9¢,/ In=€,dp,/ dn where ¢ and ¢, are the
electric potentials in the liquid and particle, and €, and €, are
the dielectric constants of the fluid and particle. A similar
boundary condition is applied at the two-fluid interface. The
electric potential is prescribed on the electrodes as constant
values and the normal derivative of the potential is taken to
be zero on the remaining domain boundary. The electric field
is then deduced from the equation E=—V¢. The Maxwell
stress tensor o, is given by o,=€eEE—-1/2€(E-E)I, where
I is the identity tensor and the electrostatic force acting on
the ith particle is then obtained by integrating o, over its
surface, i.e., Fpgp=[ (;Pi(,)a'M-nds, where n is the unit outer
normal on the surface of the ith particle. The computational
domain in our finite element code is discretized using a tet-
rahedral mesh and the boundary conditions are imposed on
the surface of the particles. The resulting linear system of
equations is solved using a multigrid preconditioned conju-
gate gradient method [7].

B. Vertical electrostatic force

As noted above, even though the applied electric field
away from the interface is uniform, a particle within the
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interface experiences an electrostatic force normal to the in-
terface due to a jump in dielectric constants across the inter-
face. If the interface does not contain any particles, the elec-
tric field is normal to the interface and its intensity in the
lower and upper fluids is constant, while changing discon-
tinuously at the interface according to the boundary condi-
tion stated above.

In the case of two spherical particles placed at the inter-
face, the electric field distribution on the domain mid plane,
which passes through the spheres centers, is shown in Fig. 4
for three different combinations of dielectric constants when
the particle centers are at the undeformed interface. To com-
pute the electrostatic force acting on the particles, we must
first determine the shape of the interface which, in general, is
deformed due to the presence of the particles. The deformed
interface shape can be computed by solving the equations of
motion for the fluids and the particles and for the interface,
subjected to the contact angle and boundary conditions. This,
however, is difficult to do analytically and beyond the scope
of this manuscript. The dielectric constant of the upper fluid
is assumed to be 1, while those of the lower fluid and the
particles are varied. The figure shows how the particles pres-
ence at the interface modifies the electric field distribution.
In particular, the electric field is the weakest in the fluid or
particle region in which the dielectric constant is the largest
and the strongest in the region for which the dielectric con-
stant is the smallest. For example, in Fig. 4(a), where the
dielectric constant of the particles has a value in between the
dielectric constants of the lower and upper fluids, the electric
field intensity is the strongest in the upper fluid, the weakest
in the lower fluid and in between these two values inside the
particles. It follows that the magnitude of the vertical elec-
trostatic force on the particle, as well as its direction, de-
pends on the dielectric constant values. For example, the
force is positive (acts against gravity) in Figs. 4(a) and 4(b),
and negative in Fig. 4(c). The lateral electrostatic force is
repulsive in all three cases, but its magnitude depends on the
dielectric constant values and is different for the three cases.

We now turn to the electric field distribution around a
particle when its position within the interface is altered (Fig.
5). Notice that because of the presence of the interface the
electric field around the particles is not symmetric and, as a
result, the particle experiences an electrostatic force in the
direction normal to the interface. For these calculations, the
dielectric constants of the upper fluid, the lower fluid and the
particle are set to €,=1.0, €=5.0, €,=0.5. Figure 5(a)
shows that a particle with its center at the undeformed inter-
face experiences an electrostatic force in the upward direc-
tion. The electric field distributions for the cases when the
particle center is below and above the undeformed, flat inter-
face are shown in Figs. 5(b) and 5(c). The electrostatic force
is in the upward direction in the former case and in the
downward direction in the latter case.

Our numerical results show that the vertical component of
the electrostatic force in a dc field (or time averaged force in
an ac field) acting on a particle can be written as

e € € h
Fevzazeoea(g—L— 1)152 (:Llef> (1)

Here a is the particle radius, E=V,/L is the average electric
field strength away from the particle (or the r.m.s. value of
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the electric field in an ac field), €,, €,, and ¢, are the dielec-
tric constants of the particle, the upper fluid and the lower
fluid, respectively, and €,=8.8542X 107! F/m is the per-
mittivity of free space. Here, L is the distance between the
electrodes, V is the voltage difference applied to the elec-
trodes, and f,(€./€,,€,/€,,6.,h,/a) is a dimensionless
function of the included arguments (6. and h, being defined
in Fig. 2). The dependence of the force on the particle radius
a is quadratic which was established numerically as shown in
Fig. 6. The factor (€, /€,—1) ensures the fact that the force is
zero when €;/€,=1 as the fluids dielectric constants are the
same in this case. It is assumed that the interface is flat and
intersects the particle’s surface at 6, (see Fig. 2). One of the
focuses of this paper is on the behavior of small floating
particles for which the interfacial deformation is negligible,
and thus 6, = 7— a, where « is the contact angle (see Fig. 2).
In addition, the influence of electrowetting is considered only
in the sense that if there is a change in the effective contact
angle, the resulting change in the particle’s position within
the interface can be accounted for by changing 6, [8]. Also
notice that the dependence of the electrostatic force on the
particle radius a is quadratic compared to the cubic depen-
dence of the dielectrophoretic force which acts on a particle
in a nonuniform electric field.

In Fig. 7, we have set €,=1, and €,=2.0 [Fig. 7(a)] or 0.5
[Fig. 7(b)], and studied the force coefficient f,, as a function
of sin . for various values of €;, where 6. =6,.— /2. Notice
that it is sufficient to consider the case where €; > €, because
the electric force for the corresponding case where €, <g,
can be deduced from the results shown in Fig. 7 by simply
reversing the direction of the force. The figure shows that for
sin . <0 the force coefficient f, is positive for all cases
investigated here and its magnitude decreases with increas-
ing €. A positive value of the electrostatic force for 6. <0
implies that the particle is pushed into the upper liquid
whose dielectric constant is smaller. However, from Fig. 7(a)
we also notice that for €,=5 and sin 6.>0.8, and for €,
=50 and sin 0. >0.3, f, is negative, implying that the par-
ticle in these two cases is pushed into the lower liquid whose
dielectric constant is larger. In other words, if the particle
center is located below the interface at a distance larger than
a critical distance (whose value depends on ¢;), the particle
is pushed further downwards; otherwise, the electrostatic
force pushes the particle upwards. Therefore, in the presence
of an electric field the interface acts as a barrier because it
opposes the motion of the particles across the interface. The
figure, however, also suggests, since the vertical force is
largely positive, that the electric force pushes particles into
the fluid whose dielectric constant is smaller provided the
latter are able to cross the interface barrier. The figure also
shows that for €, =1.1 the force is maximal when 6.=0 and
that the angle . for which the force is maximal decreases
with increasing €;.

Similarly, for €,=0.5, shown in Fig. 7(b), there is a criti-
cal value of 6 at which f, changes sign, and the critical
value of ¢, decreases with increasing ¢;. This, as in Fig. 7(a),
implies that the electrostatic force pushes the particle away
from the flat interface, and thus, as it was the case above, the
interface acts as a barrier for the particles. The critical value
of €, in Fig. 7(b), however, is smaller than in Fig. 7(a) at the
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FIG. 4. (Color online) The electric field intensity on the domain
midplane passing through the particles centers for the device shown
in Fig. 2, for various dielectric constant values. The spherical par-
ticles of radius a are placed so that their centers are aligned with the
nondeformed interface and at a distance 2.6a of each other. The
spheres alter the electric field distribution, and experience an elec-
trostatic force. The dielectric constants of the upper fluid, lower
fluid, and the particles were set to (a) €,=1, €,=5, and €,=2. The
vertical force is 4.16 and the lateral force is —0.156, (b) €,=1, ¢
=2, and €,=5. The vertical force is 3.39 and the lateral force is
-0.34, (c) €,=1, =5, and €,=2. The vertical force is —1.49 and
the lateral force is —0.124. In all cases, the lateral electrostatic force
is repulsive while the vertical electrostatic force can be either up-
ward (a),(b) or downward (c).
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FIG. 5. (Color online) Electric field intensity on the domain
midplane for the device shown in Fig. 2 in which one particle is
placed at the interface. The dependence of the electric field upon the
position of the particle within the interface is studied. The dielectric
constants were set to €,=1, =5, and €,=0.5. The particle alters
the electric field distribution and experiences an electrostatic force
in the vertical direction. The direction of the force, as well as its
magnitude, depends on the particle position within the interface. (a)
The sphere center is at the interface. The vertical electrostatic force
is 0.354 (in the upward direction). (b) The sphere center is at a
distance of 0.6a below the interface. The vertical electrostatic force
is —2.22 (in the downward direction). (c) The sphere center is at a
distance of 0.6a above the interface. The vertical electrostatic force
is 0.553.
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FIG. 6. The vertical electrostatic force computed numerically is
plotted as a function of the particle radius a, along with the best
power law fit, showing the quadratic dependence of the force on the
particle radius. The dielectric constants were assumed to be €,=1,
€,=2, and 6p=1.5.

same €, value. The actual vertical position (6.) of a particle
is, of course, determined by the balance of the buoyant
weight, the vertical capillary force, and the electrostatic
force.

C. Lateral electrostatic forces

The dipole-dipole interaction force between two dielectric
spheres immersed in a fluid with the dielectric constant €,
and subjected to a uniform electric field, in the point-dipole
limit, is given by the following well-known expression in
spherical coordinates [8,9]:

4
Fo(r,0) =f0<%> [(3 cos” 6= De, +5in 26 €], ()

where f,=12me,€,a* B2E* (E being the magnitude of the uni-
form electric field along the z axis), @ denotes the angle
between the z axis and the vector r joining the centers of the
two particles, r=|r|, B=(€,—€,)/(€,+2¢,) is the Clausius-
Mossotti factor, and €, is the dielectric constant of the par-
ticle. If the electric field is perpendicular to the line joining
the centers of the particles, i.e., #=1/2, the interaction force
is repulsive and tangential to the interface.

However, the above expression is not applicable to par-
ticles floating in a two-fluid interface, as the fluid’s dielectric
constant changes discontinuously across the interface. The
computations described above were used to show that the
lateral interaction force can be written as

4 h
FD(r)=eoea<3+1)a2E2<g> fD<3,fﬂ,0c,—2 . )
€, r a

6(1 a

where fp is a dimensionless function of the included argu-
ments, with the force depending upon the sixth power of the
particle radius a and on the fourth power of the inverse of the
distance between the particles as shown in Fig. 8(a) and 8(b).
As was the case for Eq. (1), the above expression is obtained
by assuming that the interface is flat and that it intersects the
sphere’s surface at 6,.. The force also depends on the dielec-
tric constants of the two fluids involved, and the positions 6,
of the particles within the interface. The latter in this study is
assumed to be the same for the two particles. However, if
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FIG. 7. The vertical electrostatic force coefficient f, is plotted as
a function of sin 6. for e,=1.1, 2, 5, and 50. The dielectric constant
of the particle is 2.0 (a) and 0.5 (b) and that of the upper liquid is
1.0.

particles were not of the same type or size, their positions 6,
within the interface would be different, and the interaction
force would be even more complex.

Figure 9 displays the force coefficient f, as a function of
sin ¢, for €,=1, and €,=2.0 [Fig. 9(a)] and 0.5 [Fig. 9(b)].
The force is repulsive for all values of ¢; investigated. From
Fig. 9(a) we note that for €,=2.0 and €, =50, the magnitude
of fp is maximum when 6. is around zero, but is relatively
independent of ¢, for €, =1.1 and 5.0. Also notice that for
€,=2.0, as expected, fp, goes to zero when the sphere is
completely submerged in the lower liquid as, in this case, the
dielectric constant of the particles is the same as that of the
lower fluid.

For the case corresponding to €,=0.5 shown in Fig. 9(b),
fp increases in magnitude with increasing 6. when 6. <0 for
€,=1.1 and 2.0. This is due to the fact that the dielectric
constant of the lower fluid is larger than that of the upper
fluid. However, for ¢,=5 and 50, f, attains a maximum
value in magnitude and then decreases with increasing 6.
This result suggests that for larger values of ¢; the interface
enhances the repulsive force between the particles.
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FIG. 8. The lateral dipole-dipole interaction force computed nu-
merically is plotted as a function of (a) the dimensionless distance
r/a between the particles and (b) the particle radius a for a fixed
distance r between the particles. The best power law fits, showing
that the force depends on the inverse of the fourth power of the
distance between the particles and on the sixth power of the particle
radius, are also shown. The dielectric constants are assumed to be
€=1, =2, and ¢,=1.5.

The repulsive interaction energy W, between two par-
ticles can be obtained by integrating Eq. (3) with respect to r,
which gives

1 4 h
Wp(r)=- gEOEa(% + l)azEz(%>fD<i,fE, HC,;Z>.

a eu a

(4)

Let us assume that €,=2.0, €,=4.0, E=3 X 10° volt/m, f,
=3.1, and r=2a. For these parameter values, the interaction
energy is shown as a function of the particle radius in Fig.
10. For a=1 um, Wp(r)=~1.67x10* kT and for a
=100 nm, Wp(r)=~16.7 kT, where k is the Boltzman con-
stant and 7 is the temperature, indicating that the repulsive
electrostatic force is larger than the random Brownian force
acting on the particles. This shows that the electrostatic re-
pulsive force (3) can be used to manipulate nanoparticles
within a two-fluid interface.

D. Vertical force balance in equilibrium

We next consider the vertical force balance for a spherical
particle floating within the interface between two immiscible
fluids. The buoyant weight F, of the particle is balanced by
the capillary force F, and the electrostatic force F.,, that is

PHYSICAL REVIEW E 77, 056302 (2008)

(b) - . . sin g,

FIG. 9. The dipole interaction force coefficient f, is plotted as a
function of sin 6:, for ¢,=1.1, 2, 5, and 50. The dielectric constant
of the particle is 2.0 (a) and 0.5 (b) and that of the upper liquid is
1.0. The distance between the particles is 2.6a.

F.+F,+F,=0. (5)

The buoyant weight is given by F,
=—gp, > f,(pa Pr > pp! pL 0., hy/a), where g is the accelera-
tion due to gravity, p, is the particle density, p, and p; are the
densities of the upper and lower fluids, 6, and &, are defined
in Fig. 2, and f, is a function of p,/p;, p,/p., 6. and hy/a.
It is easy to deduce from Fig. 2 that the capillary force F,
takes the expression F,=—27ya sin 6, sin(6,+ «), where « is
the contact angle. Therefore, Eq. (5) can be rewritten as

F.==2ya sin 6, sin(6,. + o)

Pa Pp , M2
= gpLa3fb<_7_E’ 0C’_)

PL PL a

€ €, € h
_a2€06a<_L - 1>E2fv<_a,_2a0c,_2)~ (63)

Ea EL GL a

In dimensionless form, the previous equation reads
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FIG. 10. Energies of capillary attraction (W,) and dipole-dipole
repulsion (W,), in kT units, are plotted against the particle radius.
For W/(KT) > 1, the capillary attraction and the dipole-dipole repul-
sion are stronger than the Brownian force for all particles sizes
down to a radius of approximately 100 nm. The parameters are €,
=20, =40, E=3X10° volt/m, f,=1, fp=1, y=0.01, p,
=1 kg/m?, p;=1000, p,=3000 kg/m?, and r=2a.

h
27 sin 6, sin(6, + @) = — B f,,<&,‘—’ﬂ,ac,—2>

PL PL a
€ €, € h
+WE<—L—1)fv(—“,—E,ec,—2>.
€, € €] a
(6b)

Here B=p,a’g/ vy is the Bond number and W= €y€,aE?/ vy is
the electric Weber number.

As the particle radius a approaches zero, the Bond num-
ber B=p,a*g/y— 0. In this limit, in the absence of an elec-
trostatic force, the right hand side of Eq. (6b) is zero and thus
sin(a+60c)= 0 or 6o~ 7—«a (see Fig. 2). This means that a
small particle floats so that the interfacial deformation is in-
significant. Hence, the lateral capillary force, which arises
from the interfacial deformation, in this limit, is also insig-
nificant. As noted earlier, for particles floating on water, this
limit is reached when the particles radius is approximately
10 um (see Ref. [3]).

Another important limit is the case for which the Bond
number approaches zero, but Wy does not. This situation
arises, for instance, for small particles when the magnitude
of the electric field is sufficiently large. The equilibrium po-
sition of a particle within the interface in this case is deter-
mined by the balance of the interfacial and electrostatic
forces alone. The interface is then deformed by the particle,
and so the lateral (electric field induced) capillary forces are
present and can cause particles within the interface to cluster.

E. Interfacial deformation and lateral capillary force

In equilibrium, the external vertical force acting on a par-
ticle is balanced by the vertical component of the capillary
force which, as noted earlier, arises because of the deforma-
tion of the interface. The profile of the deformed interface
around a particle can be obtained by integrating Laplace’s
equation and using the boundary conditions that (i) the inter-
face far away from the particle is flat and (ii) the angle be-
tween the interface and the horizontal at the particle surface
is known in terms of the total external force acting on the
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particle. It can be shown that the interface height 7(r) at a
distance r from a spherical particle is given by (see Refs.
[3’5’10])

7(r) =a sin(6, + a)Ko(qr), ()

where K,(gr) is the modified Bessel function of zeroth order
and g=v(p,.—p,)g/ y. In obtaining the above expression we
have ignored the influence of the electrostatic stress on the
interface, including the stress that arises due to the presence
of the particle, and assumed that the interfacial deformation
is small.

Let us consider a second particle at a distance r from the
first particle. The height of the second particle is lowered
because of the interfacial deformation caused by the first
particle, and thus the work done by the electrostatic force
and gravity (buoyant weight) is

Wc= n(r)(Fev'l'Fb)' (8)

Notice that the electrostatic force is due to a field that is
external to the fluid-particle system, as is the gravitational
field, and therefore the work done by both fields is treated in
a similar manner. In this analysis, we will ignore the work
done by the electrostatic stress that acts on the two-fluid
interface. In addition, this analysis of the behavior of two
particles does not account for the multi body interactions.
Using Egs. (6a), (6b), and (7), Eq. (8) can be rewritten as

(Fev+Fb)2

W.=-
2

Ko(qr)

€ e 4 2
=-| - &¢€, 6——1 aEfU+§7m ppefs 2—Ko(qr).

a Y
9)

In Fig. 10, the interaction energy W, due to the lateral cap-
illary force is plotted as a function of the particle radius. The
parameter values are €,=2.0, €,=4.0, E=3X 10° volt/m,
f,=1, ¥=001, p,=1 kg/m®  p,=1000 kg/m?, p,
=3000 kg/m?3, and r=2a. The figure shows that for these
parameter values, the interaction energy (9) is significant for
nanosized particles.

The lateral capillary force between two particles is there-
fore given by

aw.,
Fe=="gy
€ 4 24K1(6]r)
= —eoea<—L—1>a2E2fU+—7Ta3ppgfb —_—,
€, 3 2y
(10)

where K;(gr) is the modified Bessel function of first order.
When the two particles are far away from each other, the
above reduces to
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g
2myr
(11)

€ 4
Fi.=- {— 606a<6_L - l)azEsz + gwa3p,,gf;,

a

Notice that the lateral capillary force depends on the net
vertical force acting on the particle, which includes its buoy-
ant weight and the vertical electrostatic force. The force var-
ies as the fourth power of the applied electric field and if the
electrostatic force and the buoyant weight are in the same
direction, the electric field enhances the lateral capillary
forces among the particles.

However, it is noteworthy that the vertical electrostatic
force may not be in the same direction as the buoyant
weight, and if this is the case there is a critical value of the
electric field strength for which the net vertical force acting
on the particle is zero. The lateral capillary force among the
particles under these conditions would also be zero; this sug-
gests that the electric field can be used to decrease, or even
eliminate, capillarity induced attraction among the particles.
If the electric field strength is increased further, the particles
move upward in the interface and the capillary forces arise
again but the interface near the particles would be curved
downwards. Here we wish to note that the capillary force can
cause particles to interact with each other only when the
associated interaction energy is greater than kT, and therefore
when the net external vertical force acting on the particles is
small the latter are not likely to cluster as their motion would
be governed by thermal fluctuations.

F. Spacing between particles

The dimensionless equilibrium separation r./(2a) be-
tween two particles can be obtained by equating the repul-
sive electrostatic force (3) and the above attractive capillary
force (11). After simplification, we obtain

€ 13
2mepe,| — + 1 | yEXp

a

gy
D | —

€ 0 4 2
a| - e\ — — 1 |E°f, + S map,gfs
€ 3

a

(12)

This expression gives the dependence of r,/(2a) on the pa-
rameters of the problem. However, we remind the reader that
the dimensionless parameters f,, fp, and f;, themselves de-
pend on several parameters [this dependence is not repro-
duced in Eq. (12) for the sake of simplicity]. Notice that
req/ (2a) decreases with increasing particle radius a.

We now consider two limiting cases of the previous ex-
pression. The first is the case of relatively large particles for
which the buoyant weight is much larger than the vertical
electrostatic force. In this situation, Eq. (12) implies that
req/ (2a) increases with increasing electric field strength as
E??. This is approximately the case for a=107> m, as shown
in Fig. 11(a). These conclusions are in agreement with the
experimental data reported in Ref. [1] for particles with r
=~10"3 m. The attractive capillary forces for such particles
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primarily originate in the interfacial deformation due to their
buoyant weight, and the repulsive force is due to the dipole-
dipole interaction between them.

The second limiting case is that of relatively small sized
particles for which the buoyant weight is negligible com-
pared to the vertical electrostatic force. From Eq. (12), after
the buoyant weight is neglected, we obtain that r.,/(2a) de-
creases with increasing electric field strength as E~23. As
shown in Fig. 11(b), this limiting case is approximately
reached for a=1 um. Both attractive and repulsive forces in
this case are due to the applied electric field (since the buoy-
ant weight is negligible). The attractive part varies as the
fourth power of the electric field, but is long ranged (varies
as r~!). The repulsive part, on the other hand, varies as the
square of the electric field, but is short ranged (varies as r%).

Here we wish to distinguish the above result with the
model presented in Ref. [11] to explain the observation that
small charged particles within an interface between water
and a nonpolar liquid, such as air or oil, form periodic ar-
rangements. They showed that in addition to interacting elec-
trostatically with each other, the charged particles experience
lateral capillary forces that arise because of the deformation
of the interface (also see Ref. [12]). The interfacial deforma-
tion in this case is not due to the particles weight (which is
negligible) or an externally applied electric field (which is
the case discussed in this paper), but due to a vertical elec-
trostatic force that acts on the particle within the interface
because of its charge.

In the intermediate range between the two previous limit-
ing cases, the attractive capillary force is a result of the net
vertical force acting on the particles, which includes both the
buoyant weight and the vertical electrostatic force. In an ac-
tual physical system, this intermediate range correspond to
particle radii between ~10 and ~100 um. We now consider
first the case in which the electrostatic force and the buoyant
weight are in the same direction. The latter dominates when
the electric field strength is small, and therefore, the distance
between the particles increases with increasing electric field
[see Fig. 11(c)]. However, as the electric field strength is
increased to a level where the vertical electrostatic force is
much larger than the buoyant weight, the distance between
the particles decreases with increasing electric field strength.
Here, it is important to note that this result can be observed
in experiments only if the electrostatic and capillary forces
are larger than the Brownian forces. Furthermore, the former
forces cannot be observed if they do not cause an observable
deterministic motion. This may be the case if the distance
between the particles is too large.

We next consider the case in which the electrostatic force
and the buoyant weight are not in the same direction. In this
case, there is a critical value of the electric field strength at
which the lateral capillary force is zero. This corresponds to
the situation where the sum of the buoyant weight and the
vertical electrostatic force on the particle is zero. As a result,
as shown in Fig. 11(d), r.y/(2a) approaches infinity because
the only lateral force the particles experience is the repulsive
electrostatic force. However, since the repulsive electrostatic
force decays as the fourth power of the distance between the
particles, in experiments, the particles are expected to move
only to a distance at which the associated interaction energy
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FIG. 11. The dimensionless equilibrium separation between two
particles is plotted as a function of E for three values of the particle
radius a. (a) a=10"3 m, req/ (2a) increases with increasing E. (b)
a=1 pm, re/(2a) decreases with increasing E. (c) The buoyant
weight and the vertical electrostatic force are in the same direction
and a=4X 107 m. For E small, r.y/(2a) increases with increasing
E, but for E large it decreases with increasing E. (d) The buoyant
weight and the vertical electrostatic force are in the opposite direc-
tions and a=4 X 10> m. For small values of E, req/(2a) increases
with increasing E. There is a critical value of E for which the lateral
capillary force is zero and thus particles only experience the repul-
sive electrostatic force and req/ (2a) approaches infinity. For E large,
req/ (2a) decreases with increasing E.
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becomes comparable to kT. Another interesting feature of the
curve in Fig. 11(d) is that a further increase of the electric
field strength causes the lateral capillary forces to increase
(since the sum of the buoyant weight and the vertical elec-
trostatic force on the particle is again nonzero) and r,/(2a)
to decrease.

III. DISCUSSION AND CONCLUSIONS

In view of explaining in detail the clustering of particles
reported experimentally in Ref. [1], we have studied the elec-
trostatic and capillary forces acting on a particle within a
two-fluid interface in the presence of both an externally ap-
plied electric field and other particles. Specifically, we have
determined the dependence of the electrostatic force upon the
dielectric properties of the fluids and the particles, as well as
the position of the particle within the interface. It was as-
sumed that the particles and the two fluids involved are per-
fect dielectrics, and that the particles are spherical. The elec-
trostatic force was found to contain components both normal
and tangential to the interface. The former arises because the
dielectric constants of the two fluids involved are different
and the latter is due to the dipole-dipole interactions among
the particles. The component of the electrostatic force nor-
mal to the interface is shown to vary as the square of the
particle radius a®. For sufficiently large distances between
the particles, the lateral electrostatic force between two par-
ticles varies as a® and decreases with increasing distance
between the particles as 7~*. We have also shown that when
E~3X10° V/m, the electrostatic forces can be used to ma-
nipulate the distance between nanosized particles floating at
a two-fluid interface. Expressions of the various forces in-
volved, as well as the equilibrium distance between the par-
ticles were given in Ref. [1], with a reference to the present
paper for details.

The normal component of the electrostatic force, includ-
ing its sign, depends on the dielectric constants of the fluids
and particles. The equilibrium particle position 6, of a par-
ticle within the interface is determined by the balance of the
buoyant weight, the vertical interfacial force and the vertical
electrostatic force. For small spherical particles, in the ab-
sence of an electric field the particle’s position is primarily
determined by the contact angle since the buoyant weight is
negligible. Our numerical results show that when the dielec-
tric constant of the upper fluid is smaller than that of the
lower fluid and the particle’s center is above the undeformed
interface (this is the case for a small particle which is non-
wetting with the lower liquid), the electrostatic force is in the
upward direction. If, on the other hand, the particle center is
below the undeformed interface (this is the case for a small
particle which wets the lower liquid), there is a critical value
of 6. at which the electrostatic force changes direction. The
critical value of 6, depends on the dielectric constants of the
fluids and the particle. Therefore, in the presence of an ex-
ternally applied electric field, the interface acts like a barrier
to the particles: the electrostatic force pushes the particles
below the interface downwards and those above the interface
upwards. The overall tendency of the electric force, however,
is to push particles into the fluid region whose dielectric
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constant is smaller, but this can occur only if the particles
have sufficient energy to cross the electric interface barrier.

In equilibrium, the net vertical force acting on a particle at
the interface, which includes the electrostatic force and the
buoyant weight, is balanced by the vertical capillary force
which arises because of the deformation of the interface. The
deformation of the interface, in turn, gives rise to lateral
capillary forces which cause particles at the interface to clus-
ter. More specifically, it is shown that the magnitude of these
lateral forces is determined by the square of the net vertical
force acting on the particle which includes both the buoyant
weight and the vertical electrostatic force. The lateral capil-
lary forces are long ranged and depend on the fourth power
of the electric field intensity.

The buoyant weight and the vertical electrostatic force,
however, may not be in the same direction, and when this is
the case the electric field, in fact, reduces lateral capillary
forces. If the electrostatic force and buoyant weight are in the
same direction, the electric field enhances lateral capillary
forces. This is an important result, especially for micron and
sub micron sized particles for which the buoyant weight is
negligible, because it shows that the clustering behavior of
particles, including that of small particles, can be controlled
using an externally applied electric field.

The equilibrium distance between two particles was ob-
tained by equating the attractive capillary and repulsive elec-
trostatic forces. Equilibrium is possible because the attractive
capillary force between the particles is long ranged (decays
as r~!) and dominates the electrostatic repulsive force which
is short ranged (decays as ) when the distance between the
particles is large. The opposite is true when the distance be-
tween the particles is small. The equilibrium distance was
shown to depend on the particle radius, the electric field
intensity, the buoyant weight, the particle’s position within
the interface and the dielectric constants. These results are in
agreement with the recent experiments reported in Ref. [1]
which show that the equilibrium distance between particles
can be controlled by adjusting the electric field strength (see
Fig. 1).

The theoretical results presented here correctly capture
the trends observed in experiments. For example, the varia-
tion of the dimensionless equilibrium distance r.,/(2a) be-
tween two particles with the electric field strength, and also
with the particle radius is predicted correctly as shown in
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FIG. 12. The equilibrium separation re,/(2a) between two par-
ticles for a=37 and 53 um as given by Eq. (12) and the actual
measured values (denoted by “expt.”) are shown as functions of the
voltage applied to the device described in Ref. [1]. The electric
force coefficients were numerically estimated to be f,=0.27, fp
=0.019, and f;,=0.64. From the experimental photographs, we esti-
mated 6.=76.5° for the particles with a=37 um, and this value
was used for both cases. The agreement between the theory and the
experimental data is very good, especially when the distance be-
tween the particles is more than 2.5a, considering that there are no
adjustable parameters.

Fig. 12. The figure displays r,/(2a) given by Eq. (12), along
with the actual measured values, as functions of the voltage
applied to the device described in Ref. [1]. The data is pre-
sented for =37 and 53 um. The distance between two par-
ticles increases with increasing electric field and with de-
creasing particle radius. From Sec. II F we know that in the
limiting cases the dimensionless distance between two par-
ticles varies as EP. For relatively large sized particles
(a> ~1000 wm), for which the buoyant weight dominates,
B=2/3, and for submicron sized particles, B=—-2/3. For the
data presented in Fig. 12, the distance between the particles
increases with increasing E. According to Eq. (12), for sub-
micron sized particles the distance between two particles
should decrease with increasing electric field strength. At
present, such experimental data for micron and submicron
sized particles is not available, and therefore we are unable
to verify the predictions of our theory for this size range.
This reversal in the particle separation with increasing elec-
tric field strength, as noted before, is a consequence of the
fact that the attractive capillary force is not a result of the
particles’ buoyant weight, but instead arises from the vertical
electric force acting on the particles.
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